EXPERIENCES INCORPORATING JAVA INTO THE

INTRODUCTORY SEQUENCE’

Brad Richards
Computer Science Department
Vassar College
Poughkeepsie, NY 12604
richards@cs.vassar.edu

ABSTRACT

This paper describesarestructuring of our introductory sequence that resultedinthe
adoption of Java in our data structures course. Our motivation and plans are
discussed, and our experiences- not dways positive - are presented. While some
of these experiences arespecific to our functiona-firgt introductory sequence, issues
such asthe trangtion from Java to C++ and the impact on later courses are likely
to arise in most departments.

1. INTRODUCTION

Java caught the eye of Computer Science educatorsamodt as soonas it was introduced,
and itsmeritsas anintroductory programming language have been extolled innumerous papers
[2,3,9,12,15]. But few papers have documented the decision process leading to the adoption
of Javain agiven department, and little mentionhas been made of itsimpact upona curriculum
as a whole. This paper reports on our experiences integrating Java into the introductory
sequence. It describes the discussion within our department that led to the adoption of Java,
the specificsof itsuseinour curriculum, and the sometimes unexpected impact on later courses.

" Copyright © 2003 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee al or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and noticeis given that copying is by permission of the Consortium
for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

247

JCSC 19, 2 (December 2003)

2. BACKGROUND

Founded in 1861, Vassar College isaresdentia, coeducationd libera arts college with
goproximately 2400 students and 220 full-time faculty members. Vassar was a women's
college until 1969, and the mgority of the student body, 61%, <till consists of women. Courses
incomputing have been offered sincethe 1960s (an1BM 360 arrived in 1967), and aMath/CS
interdisciplinary degree was introduced in 1981. A Computer Science mgor was introduced
in1991 whenCS emerged as a separate department. The department currently hassix full-time
faculty and about 50 mgors. The 12 to 15 computer science majors that graduate each year
gplit dmost evenly between industry careers and graduate study.

In the terminology of the ACM/IEEE Curriculum 2001 report [13], our curriculum uses
a"functiond fird" introductory approachwiththe rest of the programcons sting of *topi c-based"
courses. Asthe department offersno coursestargeted spedificdly at non-magjors, CMPU 101
- "ProblemSolvingand Procedural Abstraction™ has been designed bothtointroduce computing
to studentsintending to mgjor in Computer Science, and to giveabroad introductionto the fidd
to thosewho choose not to take additiona coursesin the department. This hasinfluenced the
desgn of the course in a number of ways. First, CMPU 101 introduces programming via
Scheme, thereby limiting the time required to learn syntax and programming environments, and
dlowing a high-levdl presentation of problem solving, dgorithms, and some basic data
sructures. Second, some higtorical background and "big ideas’ in computing are included.
Findly, in an effort to broaden the course, students are assigned readings from [16] covering
topics such as ethics, copyright law, computational complexity, and the limits of computing.
Students enrolling in CMPU 101 have awide variety of backgroundsand interests. While not
specificaly required for any graduati onrequirement, the course is one way for sudentsto satisfy
a quantitative analysis requirement and is taken by approximately 100 students each yesr.
Fewer than 15% typicaly continue on to mgor in Computer Science, with the remaining
sudents split fairly evenly between mgorsin the arts and in the sciences.

Students who continue through the introductory sequence next take CMPU 102 -
"Objects and Data Abgtraction”, afairly traditiona course on agorithms and data structures.
The courseis currently taught in Java, but used C++ until the recent curriculum change. CMPU
102 istailored to take studentsfrom CM PU 101, withno imperative programming experience,
and leverages off of the problem-solving and task decompositionkills studentslearnin CM PU
101. Both courses meet twice a week for 75 minutes, and include a two-hour closed lab
session each week.

The third course in the introductory sequence is CMPU 203, a software design course.
Titled "Software Development Methodology” until our recent curricular rearrangement, it
introduced the Standard Template Library, techniques for object-oriented design, and gave
students experience managing muchmore substantia programming projects. It has since been
renamed "Data Structures and Software Systems' and its content hasbeenmodified somewhat.
Therevised versons of all three courses are described in Section 4.

248

CCSC: Eagtern Conference

3. MOTIVATION FOR CHANGE

In the spring of 2000, our department began ddliberations over proposed modifications
to our introductory sequence. The primary reason for change was our growing concern that
there was insufficient time to cover the required materiad in each of the introductory courses.
Asisthe case a many indtitutions, additiond topics had been added over the years until it had
become nearly impossible to cover themal inany reasonable amount of detail. We were dso
hoping to smooththe trangitionbetween CMPU 101 and 102. The Scheme-based 101 course
was working very wel, but the trangtion to C++ in 102 was difficult for most students, and
required many weeks of course time that could otherwise have been spent introducing data
structures and dgorithms. Findly, we were intrigued by the possihility of adding Javato our
curriculum in an effort to present object-oriented programming earlier and more easily, and
discussed various ways in which it might serve our needs.

In our origind curriculum, the amount of time devoted to learning C++ at the start of
CMPU 102 meant that some common data structures (e.g. hash tables, heaps) had to be
pushed back and covered in CMPU 203 ingtead. This was inconsstent with the stated goals
of CMPU 203, a software design course, and made it difficult to cover the intended 203
materia thoroughly. Our first decision wasto accept redlity and redesgn CMPU 203 with the
understanding that it needed to pick up the overflow from102. Aswill be described in the next
section, its content was partitioned and some of it moved to an upper-level eective course.

We then began considering changes to CMPU 101 and 102. The most vigorous
discussons surrounded the use of Java. Our faculty were attracted to Javafor reasonsthat are
no doubt familiar to others. Chief among them in our case were the additionad compiler and
run-time checks, absence of explicit pointer syntax, uniformity of its object model, and
opportunities for GUI applications. Its gpped to students could not be denied, and it was felt
that the built-in threads and networking fecilitiescould be useful for upper-level coursesaswdl.
But how best to integrate Javainto our curriculum?

Some argued that Java was Smple enough that we should teachCMPU 101 inJava. The
next two courses in the sequence could then retain C++ and day largely unchanged. Asan
additiona benefit, sudents would aready be comfortable with an object-oriented imperative
language by the time they reached 102, dlowing moretimeto be spent ondgorithms and data
structures in that course. However, the mgority of the faculty felt that CMPU 101 should
continue to be taught in Scheme. It had served us extremely well for over adecade, dlowing
us to quickly teach computing basics to both mgors and non mgors, levelling the playing field
for students with absolutely no experience, and helping us to attract and retain women and
minorities. (These observations have been documented €l sewhere aswell [5].)

4. THE NEW INTRODUCTORY SEQUENCE

In the end it was decided that CMPU 101 would remain essentialy unchanged, though
additiond efforts would be made at the end of the semester to help prepare students to think
imperaively. CMPU 102 would switch from C++ to Java, but ill maintain its focus on
presenting dgorithms and data structures. Students would then learn C++ in the software

249

JCSC 19, 2 (December 2003)

design course, CMPU 203, the third course in our introductory sequence. As mentioned
above, some of the origind content of CMPU 203 was removed to make room for additiond
materiad on data gructures. The bulk of this materid, having to do with more advanced
software design issues, was moved to a 300-level course whereit wasfdt that students could
better gppreciateit. (Thisissmilar in spirit to the gpproach advocated in [6].)

In some ways the redesigned curricdum was an ambitious plan. Students would be
forced to learn anew language in each of their first three courses. But we have long been in
favor of having sudents learn avariety of languages, and studentswere aready havingto make
the trangtionfrom Scheme to C++ - we suspected that usng Java as a stepping stone between
the two might actualy make life easier for students, especidly snce the trangtion from Javato
C++ was expected to be quick and painless.

The progressionthrough the languages a so seemed to make senseto us. Studentswould
begin with a very high-level language, far removed from architectural details. Through the
introduction of Java (via BlueJ[10] initidly), they would begin to experience some lower-leve
mechaniams (e.g. destructive assgnment, object creation, etc.), while ftill being shielded from
details like explicit memory management. Findly, C++ would expose them to multiple
inheritence, pointers, and templates.

5. EXPERIENCES

TheJava-based versonof CM PU 102 wastaught for the firg time inthe fdl of 2000, and
we now have four semesters experience with the new course. The modified CMPU 203 was
aso firg taught in thefal of 2000, though it did not begin working with Java-trained students
until the following semester. While a certain leve of chaos and sruggle isto be expected when
implementing curricular change, the trangition has been more troublesome than expected.

Some of the difficultieswere smply the result of faculty needing to become more familiar
with the content of the new courses, and were thereforeto be expected. For example, faculty
teaching CM PU 203 without having taught the new Java-based 102 knew less thanin previous
semesters about exactly what students had seenin 102. It is harder to effectively build off of
previous materia under such circumstances. And, as othershave learned, it takestimeto learn
how best to teach an objectsfirst gpproach to computing.

But there were unexpected issuesaswell, and these cannot be so easly remedied. Firdt,
itis not obvious to us that the trangition from Scheme to Java has been any eader for students
than the trangtion from Scheme to C++ in the previous curriculum. We had assumed that
studentswould take more quickly to the sSmpler language, but thereis il a tremendous amount
of syntax for students to learn before they cando any sgnificant programming. Plus, aswell as
having to learn to think imperatively, they must now learn the concepts involved in
object-oriented programming - something that was not immediately presented in the old
C++-based versgonof 102. Inshort, our hopesof being ableto cover additiond dgorithmsand
data structuresin CM PU 102 have not beenredized. We may experiment shortly with the use
of Karel [1] or Jeroo [14] to help ease the trangtion.

250

CCSC: Eagtern Conference

More surprisngly to us, at least initidly, was that sudents were finding the trangtionfrom
Java to C++ quite difficult as well. We had naively assumed that this shift would be
dgraightforward, if not trivid. After dl, the syntax is quite amilar, and they are both
object-oriented languages. But even for the concepts that transfer directly from Javato C++,
new syntax mugt oftenbe learned. (Rushing through the barrage of syntax only servesto shake
students confidence, with perilous effects later in the course.) And the new topicsintroduced
when learning C++ are sgnificant; pointers and explicit memory management, a completely
different 1/0 modd, multiple inheritance, overloading, and the intricacies of the standard
template library. 1t is a tremendous amount of new material, and requires many weeks of
lecture to cover well. Most of this had been previoudy introduced in the C++-based version
of CMPU 102, but must now be covered in 203. Thus, we are sill not covering as much
software design material as we had hoped in CMPU 203.

Thereis aso anecdota evidence suggesting that students are not as well prepared when
they reach our intermediate-leve classes as they had been under the old curriculum. For
example, sudents in CMPU 241, our firgt theory and a gorithms course, have never had more
than one semester of experience with any given language, and seem to be less confident and
competent programmers than those that were produced by the previous curriculum.

Fndly, we are ill discussng how our upper-level dective courses will need to change
in light of the switch to Javain CMPU 102. Our department does not require a capstone
project, but each of the upper-level courses contains a substantia implementation project.
Some of these (e.g. networks, graphics) involve libraries of code provided by the ingtructor,
and have been fine tuned over a number of years. Not surprisingly, faculty are reluctant to
discard these projects or reimplement in Java. Supporting both Java and C++ and alowing
sudents to make individud language choicesin these courses will require a sgnificant amount
of work for faculty - both one-time reimplementation effort and anincreaseinthe time required
for ongoing maintenence and updates of the projects - and care must be takenthat the difficulty
of aproject is amilar across languages. On the other hand, if faculty require that sudents use
only C++, it brings into question even more sirongly the reaons for switching to Javain 102

Discussions are dready underway within the department about how best to remedy our
current dtuation. No one has proposed returning to C++ in CMPU 102, but the mgjority are
conddering switching to JavainCMPU 101 aswel. The hopeisthat by reducing the number
of languages learned in the introductory sequence, more time will be avalable for academic
content. Students would aso have two semesters to familiarize themsdves with Java and
object-oriented programming before havingto learnC++. But usng Javain CMPU 101 isill
an imperfect solution: It does not address the concerns regarding projects in upper-level
courses, it creates a much more syntax-intensve firs course, and would require additional
course changes to ensure that mgjors are exposed to functionad programming later in the
curriculum.

251

JCSC 19, 2 (December 2003)

6. SUMMARY

Our department beganimplementing arestructured curriculum in the fal of 2000. While
the integrationof Java was not our primary concern, it was one of the factorsthat motivated the
changesto our introductory sequence. Our hope wasthat the use of Javain our second course
(an introduction to dgorithms and data structures) would smooth the transition from our
Scheme-based firg course, provide a better introduction to imperative and object-oriented
programming concepts, and broaden our students experiences by exposing them to an
additiona programming language. The third course in our introductory sequence would then
introduce students to C++ and software design issues.

Unfortunately, the revised curriculum is not currently serving our needsaswell aswe had
hoped and expected. Thetrangtion from Schemeto Javaisdill substantia and time consuming,
and the move fromJava to C++ seemsto be nearly as difficult for sudentsasthe firg trangtion.
The time spent teaching language specifics is limiting the coverage of topicsin boththe Java and
C++ courses, students seem generaly less wdl prepared after the three-course introductory
sequence thanbefore, and the introduction of Java hasforced usto reconsder the details of the
rest of our curriculum.

Not dl of the effects of the restructuring have been negetive, however. By theend of our
second course, students are more familiar with object-oriented programming than they were
whenit wastaught in C++, and ther experiences are broadened by the back-to-back exposure
to Javaand C++. Studentsaso seem to enjoy the Java course morethan they did when it was
offeredinC++. Stll, departments expecting minimal impact from the integration of Javawould
be wdll advised to think carefully before acting.

ACKNOWLEDGEMENTS

The author thanks Susan Hert and the anonymous referees for their feedback on earlier
drafts of this paper.

REFERENCES

[1] ByronWeber Becker. Teaching CS1 with karel the robot injava. In Proceedings of
the thirty second SSGCSE technical symposium on Computer Science Education,
pages 50-54. ACM Press, 2001.

[2] Joseph Bergin. Javaasabetter C++. ACM SIGPLAN Notices, 31(11):21-27, 1996.

[3] Joseph Bergin, Thomas L. Naps, Constance G. Bland, Stephen J. Hartley, Mark A.
Holliday, Pamela B. Lawhead, John Lewis, MylesF. McNadly, Christopher H. Nevison,
Cheng Ng, George J. Pothering, and Tommi Terésvirta. Java resources for computer
science ingruction. In Working Group reports of the 3" annual S GCSE/SSGCUE
ITICSE conference on Integrating technology into computer science education,
pages 14-34. ACM Press, 1998.

252

CCSC: Eagtern Conference

[4] Judith Bishop and Nigd Bishop. Object-orientation in java for scientific programmers.
InProceedings of thethirty-first S GCSE techni cal symposiumon Computer science
education, pages 357-361. ACM Press, 2000.

[5] Stephen A. Block. Scheme and javain the first year. The Journal of Computing in
Small Colleges, 15(5):157-165, 2000.

[6] DuaneBuck and David J. Stucki. Design early consdered harmful: graduated exposure
to complexity and structure based on levels of cognitive development. In Proceedings
of the thirty-first SGCSE technical symposium on Computer science education,
pages 75-79. ACM Press, 2000.

[7] James Comer and Robert Roggio. Teaching a javabased CS1 course in an
academically-diverse environment. In Proceedings of the 33'@ SSGCSE technical
symposium on Computer science education, pages 142-146. ACM Press, 2002.

[8] Adair Dingle and Carol Zander. Assessing the ripple effect of csl language choice. In
Proceedings of the second annual CCSC on Computing in Small Colleges
Northwestern conference, pages 85-93. The Consortium for Computing in Small
Colleges, 2000.

[9] Jason Hong. The use of java as an introductory programming language. Crossroads,
4(4):8-13, 1998.

[10] Michae Kdllingand John Rosenberg. Guidelinesfor teaching object orientation withjava
In Proceedings of the 6th annual conference on Innovation and technology in
computer science education, pages 33-36. ACM Press, 2001.

[11] Hliot Koffman and Ursula Wolz. CS1 using java language festures gently. In
Proceedings of the 4™ annual S GCSE/SIGCUE ITiCSE conference on Innovation
and technology in computer science education, pages 40-43. ACM Press, 1999.

[12] Peter Matin. Java, the good, the bad and the ugly. ACM SIGPLAN Notices,
33(4):34-39, 1998.

[13] The Joint Task Force on Computing Curricula. Computing curricula2001. Journal of
Educational Resourcesin Computing (JERIC), 1(3es):1, 2001.

[14] Dean Sanders and Brian Dorn. Jeroo: a tool for introducing object-oriented
programming. InProceedings of the 34™ technical symposiumon Computer science
education, pages 201-204. ACM Press, 2003.

[15] Paul Tyma Why areweusingjavaagain? Communications of the ACM, 41(6):38-42,
1998.

[16] Henry M. Walker. The Limits of Computing. Jones and Bartlett, 1994.

[17] Mark Allen Weiss. Experiences teaching data structureswith java. In Proceedings of
the twenty-eighth SSGCSE technical symposium on Computer science education,
pages 164-168. ACM Press, 1997.

253

