
* Copyright © 2003 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Consortium
for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

247

EXPERIENCES INCORPORATING JAVA INTO THE

INTRODUCTORY SEQUENCE*

Brad Richards
Computer Science Department

Vassar College
Poughkeepsie, NY 12604
richards@cs.vassar.edu

ABSTRACT

This paper describes a restructuring of our introductory sequence that resulted in the
adoption of Java in our data structures course. Our motivation and plans are
discussed, and our experiences - not always positive - are presented. While some
of these experiences are specific to our functional-first introductory sequence, issues
such as the transition from Java to C++ and the impact on later courses are likely
to arise in most departments.

1. INTRODUCTION

Java caught the eye of Computer Science educators almost as soon as it was introduced,
and its merits as an introductory programming language have been extolled in numerous papers
[2,3,9,12,15]. But few papers have documented the decision process leading to the adoption
of Java in a given department, and little mention has been made of its impact upon a curriculum
as a whole. This paper reports on our experiences integrating Java into the introductory
sequence. It describes the discussion within our department that led to the adoption of Java,
the specifics of its use in our curriculum, and the sometimes unexpected impact on later courses.

JCSC 19, 2 (December 2003)

248

2. BACKGROUND

Founded in 1861, Vassar College is a residential, coeducational liberal arts college with
approximately 2400 students and 220 full-time faculty members. Vassar was a women's
college until 1969, and the majority of the student body, 61%, still consists of women. Courses
in computing have been offered since the 1960s (an IBM 360 arrived in 1967), and a Math/CS
interdisciplinary degree was introduced in 1981. A Computer Science major was introduced
in 1991 when CS emerged as a separate department. The department currently has six full-time
faculty and about 50 majors. The 12 to 15 computer science majors that graduate each year
split almost evenly between industry careers and graduate study.

In the terminology of the ACM/IEEE Curriculum 2001 report [13], our curriculum uses
a "functional first" introductory approach with the rest of the program consisting of "topic-based"
courses. As the department offers no courses targeted specifically at non-majors, CMPU 101
- "Problem Solving and Procedural Abstraction" has been designed both to introduce computing
to students intending to major in Computer Science, and to give a broad introduction to the field
to those who choose not to take additional courses in the department. This has influenced the
design of the course in a number of ways. First, CMPU 101 introduces programming via
Scheme, thereby limiting the time required to learn syntax and programming environments, and
allowing a high-level presentation of problem solving, algorithms, and some basic data
structures. Second, some historical background and "big ideas" in computing are included.
Finally, in an effort to broaden the course, students are assigned readings from [16] covering
topics such as ethics, copyright law, computational complexity, and the limits of computing.
Students enrolling in CMPU 101 have a wide variety of backgrounds and interests. While not
specifically required for any graduation requirement, the course is one way for students to satisfy
a quantitative analysis requirement and is taken by approximately 100 students each year.
Fewer than 15% typically continue on to major in Computer Science, with the remaining
students split fairly evenly between majors in the arts and in the sciences.

Students who continue through the introductory sequence next take CMPU 102 -
"Objects and Data Abstraction", a fairly traditional course on algorithms and data structures.
The course is currently taught in Java, but used C++ until the recent curriculum change. CMPU
102 is tailored to take students from CMPU 101, with no imperative programming experience,
and leverages off of the problem-solving and task decomposition skills students learn in CMPU
101. Both courses meet twice a week for 75 minutes, and include a two-hour closed lab
session each week.

The third course in the introductory sequence is CMPU 203, a software design course.
Titled "Software Development Methodology" until our recent curricular rearrangement, it
introduced the Standard Template Library, techniques for object-oriented design, and gave
students experience managing much more substantial programming projects. It has since been
renamed "Data Structures and Software Systems" and its content has been modified somewhat.
The revised versions of all three courses are described in Section 4.

CCSC: Eastern Conference

249

3. MOTIVATION FOR CHANGE

In the spring of 2000, our department began deliberations over proposed modifications
to our introductory sequence. The primary reason for change was our growing concern that
there was insufficient time to cover the required material in each of the introductory courses.
As is the case at many institutions, additional topics had been added over the years until it had
become nearly impossible to cover them all in any reasonable amount of detail. We were also
hoping to smooth the transition between CMPU 101 and 102. The Scheme-based 101 course
was working very well, but the transition to C++ in 102 was difficult for most students, and
required many weeks of course time that could otherwise have been spent introducing data
structures and algorithms. Finally, we were intrigued by the possibility of adding Java to our
curriculum in an effort to present object-oriented programming earlier and more easily, and
discussed various ways in which it might serve our needs.

In our original curriculum, the amount of time devoted to learning C++ at the start of
CMPU 102 meant that some common data structures (e.g. hash tables, heaps) had to be
pushed back and covered in CMPU 203 instead. This was inconsistent with the stated goals
of CMPU 203, a software design course, and made it difficult to cover the intended 203
material thoroughly. Our first decision was to accept reality and redesign CMPU 203 with the
understanding that it needed to pick up the overflow from 102. As will be described in the next
section, its content was partitioned and some of it moved to an upper-level elective course.

We then began considering changes to CMPU 101 and 102. The most vigorous
discussions surrounded the use of Java. Our faculty were attracted to Java for reasons that are
no doubt familiar to others. Chief among them in our case were the additional compiler and
run-time checks, absence of explicit pointer syntax, uniformity of its object model, and
opportunities for GUI applications. Its appeal to students could not be denied, and it was felt
that the built-in threads and networking facilities could be useful for upper-level courses as well.
But how best to integrate Java into our curriculum?

Some argued that Java was simple enough that we should teach CMPU 101 in Java. The
next two courses in the sequence could then retain C++ and stay largely unchanged. As an
additional benefit, students would already be comfortable with an object-oriented imperative
language by the time they reached 102, allowing more time to be spent on algorithms and data
structures in that course. However, the majority of the faculty felt that CMPU 101 should
continue to be taught in Scheme. It had served us extremely well for over a decade, allowing
us to quickly teach computing basics to both majors and non majors, levelling the playing field
for students with absolutely no experience, and helping us to attract and retain women and
minorities. (These observations have been documented elsewhere as well [5].)

4. THE NEW INTRODUCTORY SEQUENCE

In the end it was decided that CMPU 101 would remain essentially unchanged, though
additional efforts would be made at the end of the semester to help prepare students to think
imperatively. CMPU 102 would switch from C++ to Java, but still maintain its focus on
presenting algorithms and data structures. Students would then learn C++ in the software

JCSC 19, 2 (December 2003)

250

design course, CMPU 203, the third course in our introductory sequence. As mentioned
above, some of the original content of CMPU 203 was removed to make room for additional
material on data structures. The bulk of this material, having to do with more advanced
software design issues, was moved to a 300-level course where it was felt that students could
better appreciate it. (This is similar in spirit to the approach advocated in [6].)

In some ways the redesigned curriculum was an ambitious plan. Students would be
forced to learn a new language in each of their first three courses. But we have long been in
favor of having students learn a variety of languages, and students were already having to make
the transition from Scheme to C++ - we suspected that using Java as a stepping stone between
the two might actually make life easier for students, especially since the transition from Java to
C++ was expected to be quick and painless.

The progression through the languages also seemed to make sense to us. Students would
begin with a very high-level language, far removed from architectural details. Through the
introduction of Java (via BlueJ [10] initially), they would begin to experience some lower-level
mechanisms (e.g. destructive assignment, object creation, etc.), while still being shielded from
details like explicit memory management. Finally, C++ would expose them to multiple
inheritence, pointers, and templates.

5. EXPERIENCES

The Java-based version of CMPU 102 was taught for the first time in the fall of 2000, and
we now have four semesters' experience with the new course. The modified CMPU 203 was
also first taught in the fall of 2000, though it did not begin working with Java-trained students
until the following semester. While a certain level of chaos and struggle is to be expected when
implementing curricular change, the transition has been more troublesome than expected.

Some of the difficulties were simply the result of faculty needing to become more familiar
with the content of the new courses, and were therefore to be expected. For example, faculty
teaching CMPU 203 without having taught the new Java-based 102 knew less than in previous
semesters about exactly what students had seen in 102. It is harder to effectively build off of
previous material under such circumstances. And, as others have learned, it takes time to learn
how best to teach an objects-first approach to computing.

But there were unexpected issues as well, and these cannot be so easily remedied. First,
it is not obvious to us that the transition from Scheme to Java has been any easier for students
than the transition from Scheme to C++ in the previous curriculum. We had assumed that
students would take more quickly to the simpler language, but there is still a tremendous amount
of syntax for students to learn before they can do any significant programming. Plus, as well as
having to learn to think imperatively, they must now learn the concepts involved in
object-oriented programming - something that was not immediately presented in the old
C++-based version of 102. In short, our hopes of being able to cover additional algorithms and
data structures in CMPU 102 have not been realized. We may experiment shortly with the use
of Karel [1] or Jeroo [14] to help ease the transition.

CCSC: Eastern Conference

251

More surprisingly to us, at least initially, was that students were finding the transition from
Java to C++ quite difficult as well. We had naïvely assumed that this shift would be
straightforward, if not trivial. After all, the syntax is quite similar, and they are both
object-oriented languages. But even for the concepts that transfer directly from Java to C++,
new syntax must often be learned. (Rushing through the barrage of syntax only serves to shake
students' confidence, with perilous effects later in the course.) And the new topics introduced
when learning C++ are significant: pointers and explicit memory management, a completely
different I/O model, multiple inheritance, overloading, and the intricacies of the standard
template library. It is a tremendous amount of new material, and requires many weeks of
lecture to cover well. Most of this had been previously introduced in the C++-based version
of CMPU 102, but must now be covered in 203. Thus, we are still not covering as much
software design material as we had hoped in CMPU 203.

There is also anecdotal evidence suggesting that students are not as well prepared when
they reach our intermediate-level classes as they had been under the old curriculum. For
example, students in CMPU 241, our first theory and algorithms course, have never had more
than one semester of experience with any given language, and seem to be less confident and
competent programmers than those that were produced by the previous curriculum.

Finally, we are still discussing how our upper-level elective courses will need to change
in light of the switch to Java in CMPU 102. Our department does not require a capstone
project, but each of the upper-level courses contains a substantial implementation project.
Some of these (e.g. networks, graphics) involve libraries of code provided by the instructor,
and have been fine tuned over a number of years. Not surprisingly, faculty are reluctant to
discard these projects or reimplement in Java. Supporting both Java and C++ and allowing
students to make individual language choices in these courses will require a significant amount
of work for faculty - both one-time reimplementation effort and an increase in the time required
for ongoing maintenence and updates of the projects - and care must be taken that the difficulty
of a project is similar across languages. On the other hand, if faculty require that students use
only C++, it brings into question even more strongly the reaons for switching to Java in 102.

Discussions are already underway within the department about how best to remedy our
current situation. No one has proposed returning to C++ in CMPU 102, but the majority are
considering switching to Java in CMPU 101 as well. The hope is that by reducing the number
of languages learned in the introductory sequence, more time will be available for academic
content. Students would also have two semesters to familiarize themselves with Java and
object-oriented programming before having to learn C++. But using Java in CMPU 101 is still
an imperfect solution: It does not address the concerns regarding projects in upper-level
courses, it creates a much more syntax-intensive first course, and would require additional
course changes to ensure that majors are exposed to functional programming later in the
curriculum.

JCSC 19, 2 (December 2003)

252

6. SUMMARY

Our department began implementing a restructured curriculum in the fall of 2000. While
the integration of Java was not our primary concern, it was one of the factors that motivated the
changes to our introductory sequence. Our hope was that the use of Java in our second course
(an introduction to algorithms and data structures) would smooth the transition from our
Scheme-based first course, provide a better introduction to imperative and object-oriented
programming concepts, and broaden our students' experiences by exposing them to an
additional programming language. The third course in our introductory sequence would then
introduce students to C++ and software design issues.

Unfortunately, the revised curriculum is not currently serving our needs as well as we had
hoped and expected. The transition from Scheme to Java is still substantial and time consuming,
and the move from Java to C++ seems to be nearly as difficult for students as the first transition.
The time spent teaching language specifics is limiting the coverage of topics in both the Java and
C++ courses, students seem generally less well prepared after the three-course introductory
sequence than before, and the introduction of Java has forced us to reconsider the details of the
rest of our curriculum.

Not all of the effects of the restructuring have been negative, however. By the end of our
second course, students are more familiar with object-oriented programming than they were
when it was taught in C++, and their experiences are broadened by the back-to-back exposure
to Java and C++. Students also seem to enjoy the Java course more than they did when it was
offered in C++. Still, departments expecting minimal impact from the integration of Java would
be well advised to think carefully before acting.

ACKNOWLEDGEMENTS

The author thanks Susan Hert and the anonymous referees for their feedback on earlier
drafts of this paper.

REFERENCES

[1] Byron Weber Becker. Teaching CS1 with karel the robot in java. In Proceedings of
the thirty second SIGCSE technical symposium on Computer Science Education,
pages 50-54. ACM Press, 2001.

[2] Joseph Bergin. Java as a better C++. ACM SIGPLAN Notices, 31(11):21-27, 1996.

[3] Joseph Bergin, Thomas L. Naps, Constance G. Bland, Stephen J. Hartley, Mark A.
Holliday, Pamela B. Lawhead, John Lewis, Myles F. McNally, Christopher H. Nevison,
Cheng Ng, George J. Pothering, and Tommi Teräsvirta. Java resources for computer
science instruction. In Working Group reports of the 3rd annual SIGCSE/SIGCUE
ITiCSE conference on Integrating technology into computer science education,
pages 14-34. ACM Press, 1998.

CCSC: Eastern Conference

253

[4] Judith Bishop and Nigel Bishop. Object-orientation in java for scientific programmers.
In Proceedings of the thirty-first SIGCSE technical symposium on Computer science
education, pages 357-361. ACM Press, 2000.

[5] Stephen A. Block. Scheme and java in the first year. The Journal of Computing in
Small Colleges, 15(5):157-165, 2000.

[6] Duane Buck and David J. Stucki. Design early considered harmful: graduated exposure
to complexity and structure based on levels of cognitive development. In Proceedings
of the thirty-first SIGCSE technical symposium on Computer science education,
pages 75-79. ACM Press, 2000.

[7] James Comer and Robert Roggio. Teaching a java-based CS1 course in an
academically-diverse environment. In Proceedings of the 33rd SIGCSE technical
symposium on Computer science education, pages 142-146. ACM Press, 2002.

[8] Adair Dingle and Carol Zander. Assessing the ripple effect of cs1 language choice. In
Proceedings of the second annual CCSC on Computing in Small Colleges
Northwestern conference, pages 85-93. The Consortium for Computing in Small
Colleges, 2000.

[9] Jason Hong. The use of java as an introductory programming language. Crossroads,
4(4):8-13, 1998.

[10] Michael Kölling and John Rosenberg. Guidelines for teaching object orientation with java.
In Proceedings of the 6th annual conference on Innovation and technology in
computer science education, pages 33-36. ACM Press, 2001.

[11] Elliot Koffman and Ursula Wolz. CS1 using java language features gently. In
Proceedings of the 4th annual SIGCSE/SIGCUE ITiCSE conference on Innovation
and technology in computer science education, pages 40-43. ACM Press, 1999.

[12] Peter Martin. Java, the good, the bad and the ugly. ACM SIGPLAN Notices,
33(4):34-39, 1998.

[13] The Joint Task Force on Computing Curricula. Computing curricula 2001. Journal of
Educational Resources in Computing (JERIC), 1(3es):1, 2001.

[14] Dean Sanders and Brian Dorn. Jeroo: a tool for introducing object-oriented
programming. In Proceedings of the 34th technical symposium on Computer science
education, pages 201-204. ACM Press, 2003.

[15] Paul Tyma. Why are we using java again? Communications of the ACM, 41(6):38-42,
1998.

[16] Henry M. Walker. The Limits of Computing. Jones and Bartlett, 1994.

[17] Mark Allen Weiss. Experiences teaching data structures with java. In Proceedings of
the twenty-eighth SIGCSE technical symposium on Computer science education,
pages 164-168. ACM Press, 1997.

